Inverse Kinematic Solution of Robot Manipulator Using Hybrid Neural Network

نویسندگان

  • Panchanand Jha
  • Bibhuti B. Biswal
  • Prakash Sahu
چکیده

Inverse kinematics of robot manipulator is to determine the joint variables for a given Cartesian position and orientation of an end effector. There is no unique solution for the inverse kinematics thus necessitating application of appropriate predictive models from the soft computing domain. Although artificial neural network (ANN) can be gainfully used to yield the desired results but the gradient descent learning algorithm does not have ability to search for global optimum and it gives slow convergence rate. This paper proposes structured ANN with hybridization of Gravitational Search Algorithm to solve inverse kinematics of 6R PUMA robot manipulator. The ANN model used is multi-layered perceptron neural network (MLPNN) with back-propagation (BP) algorithm which is compared with hybrid multi layered perceptron gravitational search algorithm (MLPGSA). An attempt has been made to find the best ANN configuration for the problem. It has been observed that MLPGSA gives faster convergence rate and improves the problem of trapping in local minima. It is found that MLPGSA gives better result and minimum error as compared to MLPBP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinematic Synthesis of Parallel Manipulator via Neural Network Approach

In this research, Artificial Neural Networks (ANNs) have been used as a powerful tool to solve the inverse kinematic equations of a parallel robot. For this purpose, we have developed the kinematic equations of a Tricept parallel kinematic mechanism with two rotational and one translational degrees of freedom (DoF). Using the analytical method, the inverse kinematic equations are solved for spe...

متن کامل

A Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot

Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS) parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required ...

متن کامل

Kinematic Analysis of 2-DOF Planer Robot Using Artificial Neural Network

Automatic control of the robotic manipulator involves study of kinematics and dynamics as a major issue. This paper involves the forward and inverse kinematics of 2-DOF robotic manipulator with revolute joints. In this study the DenavitHartenberg (D-H) model is used to model robot links and joints. Also forward and inverse kinematics solution has been achieved using Artificial Neural Networks f...

متن کامل

Using a Neural Network instead of IKM in 2R Planar Robot to follow rectangular path

Abstract— An educational platform is presented here for the beginner students in the Simulation and Artificial Intelligence sciences. It provides with a start point of building and simulation of the manipulators, especially of 2R planar Robot. It also displays a method to replace the inverse kinematic model (IKM) of the Robot with a simpler one, by using a Multi-Layer Perceptron Neural Network ...

متن کامل

Inverse Kinematic and Jacobian Solution for Serial Manipulator based on Optimized Neural Network

Singularities and uncertainty in manipulator dynamic is a major issue in kinematic control of manipulator which is obtained by applying robot model. In this paper, artificial neural networks with optimal training process and training data have been proposed as a way to solve this problem. The main idea of this approach is to use an artificial neural network to learn the characteristics of the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014